10 research outputs found

    Local temperature and correlations in quantum many-body systems

    Get PDF
    Quantum Mechanics was established as the theory of the microscopic world, which allowed to understand processes in atoms and molecules. Its emergence led to a new scientific paradigm that quickly spread to different research fields. Two relevant examples are Quantum Thermodynamics and Quantum Many-Body Theory, where the former aims to characterize thermodynamic processes in quantum systems and the latter intends to understand the properties of quantum many-body systems. In this thesis, we tackle some of the questions in the overlap between these disciplines, focusing on the concepts of temperature and correlations. Specifically, it contains results on the following topics: locality of temperature, correlations in long-range interacting systems and thermometry at low temperature. The problem of locality of temperature is considered for a system at thermal equilibrium and consists in studying whether it is possible to assign a temperature to any of the subsystems of the global system such that both local and global temperatures are equal. We tackle this problem in two different settings, for generic one-dimensional spin chains and for a bosonic system with a phase transition at non-zero temperature. In the first case, we consider generic one-dimensional translation-invariant spin systems with short-range interactions and prove that it is always possible to assign a local temperature equal to the global one for any temperature, including at criticality. For the second case, we consider a three-dimensional discretized version of the Bose-Einstein model at the grand canonical ensemble for some temperature and particle density, and characterize its non-zero-temperature phase transition. Then, we show that temperature is locally well-defined at any temperature and at any particle density, including at the phase transition. Additionally, we observe a qualitative relation between correlations and locality of temperature in the system. Moving to correlations, we consider fermionic two-site long-range interacting systems at thermal equilibrium. We show that correlations between anti-commutative operators at non-zero temperature are upper bounded by a function that decays polynomially with the distance and with an exponent that is equal to the interaction exponent, which characterizes the interactions in the Hamiltonian. Moreover, we show that our bound is asymptotically tight and that the results extend to density-density correlations as well as other types of correlations for quadratic and fermionic Hamiltonians with long-range interactions. Regarding the results on thermometry, we consider a bosonic model and prove that strong coupling between the probe and the system can boost the thermal sensitivity for low temperature. Furthermore, we provide a feasible measurement scheme capable of producing optimal estimates at the considered regime.La Mecánica Cuántica fue establecida como la teoría del mundo microscópico, el cual permitió entender los procesos en átomos y moléculas. Su nacimiento llevo a un nuevo paradigma científico que se propagó rápidamente a otros campos de investigación. Dos ejemplos relevantes son la Termodinámica Cuántica y la Teoría Cuántica de muchos cuerpos, donde la primera pretende caracterizar los procesos termodinamicos en sistemas cuántico y la segunda intenta entender las propiedades de los sistemas cuánticos de muchos cuerpos. En esta tesis, atacamos algunas de las preguntas en la intersección entre estas disciplinas, enfocandonos en los conceptos de la temperatura y las correlaciones. Específicamente, contiene resutlados en os siguientes temas: localidad de la temperature, correlaciones en sistemas interactuantes de largo alcance y termometría a baja temperature. El problema de localidad de la temperatura es considerado para un sistema a equilibrio térmico y consiste en estudiar si es posible asignar temperature a cualquiera de los subsistemas del sistema global tal que la temperature local y global sean equivalentes. Atacamos este problemas en dos casos diferentes, for cadenas de spines genéricas y para un sistema de bosones con una transición de fase a temperature distinta a cero. En el primer caso, consideramos sistemas de espines invarantes traslacional y de una dimensión con interactions de corto alcance y provamos que siempre es posible asignar una temperature local igual a la global para cualquier temperature, incluyendo en la criticalidad. Para el segundo caso, consideramos una versión 3D y discretizada del modelo de Bose-Einstein en el estado gran canónico para alguna temperature y densidad de partículas, y caracterizamos su transición a temperatura distinta a cero. Luego, mostramos que la temperature esta localmente bien definida a cualquier temperature y cualquier densidad de partículas, incluyendo en la transición de fase. Adicionalment, observamos una relación cualitativa entre las correlaciones y la localidad de la temperature en el sistema. Moviéndonos a las correlaciones, consideramos sistemas fermiónicos de con interaction entre dos cuerpos y de largo alcance a equilibrio térmico. Mostramos que las correlations entre los operadores anti-comutativos at temperatura distinta a cero estan acotadas por arriba por una función que decae polinomiamente con la distancia y con un exponent que es igual al exponente de interacción, el cual caracteriza las interacciones en el Hamiltoniano. Además, mostrado que nuestro límite es "ajustado" asintoticamente y que los resultados se extiense a correlations entre operadores de densidad y a otros tipos de correlaciones para Hamiltonianos cuadráticos y fermiónicos con interacciones de largo alcance. Sobre los resultados en termometría, consideramos un modelo bosónico y provamos que el acoplamiento fuerte entre el termómetro y el sistema pueda incrementar la sensibilidad térmica para baja temperatura. Además, explicamos un esquema de medida accesible y capaz de producir estimación óptimas en el régimen que consideramosPostprint (published version

    Locality of temperature in spin chains

    Get PDF
    In traditional thermodynamics, temperature is a local quantity: a subsystem of a large thermal system is in a thermal state at the same temperature as the original system. For strongly interacting systems, however, the locality of temperature breaks down. We study the possibility of associating an effective thermal state to subsystems of infinite chains of interacting spin particles of arbitrary finite dimension. We study the effect of correlations and criticality in the definition of this effective thermal state and discuss the possible implications for the classical simulation of thermal quantum systems.Comment: 18+9 pages, 12 figure

    Enhancement of low-temperature thermometry by strong coupling

    Get PDF
    We consider the problem of estimating the temperature T of a very cold equilibrium sample. The temperature estimates are drawn from measurements performed on a quantum Brownian probe strongly coupled to it. We model this scenario by resorting to the canonical Caldeira-Leggett Hamiltonian and find analytically the exact stationary state of the probe for arbitrary coupling strength. In general, the probe does not reach thermal equilibrium with the sample, due to their nonperturbative interaction. We argue that this is advantageous for low-temperature thermometry, as we show in our model that (i) the thermometric precision at low T can be significantly enhanced by strengthening the probe-sampling coupling, (ii) the variance of a suitable quadrature of our Brownian thermometer can yield temperature estimates with nearly minimal statistical uncertainty, and (iii) the spectral density of the probe-sample coupling may be engineered to further improve thermometric performance. These observations may find applications in practical nanoscale thermometry at low temperatures—a regime which is particularly relevant to quantum technologies

    Application of Tensor Neural Networks to Pricing Bermudan Swaptions

    Full text link
    The Cheyette model is a quasi-Gaussian volatility interest rate model widely used to price interest rate derivatives such as European and Bermudan Swaptions for which Monte Carlo simulation has become the industry standard. In low dimensions, these approaches provide accurate and robust prices for European Swaptions but, even in this computationally simple setting, they are known to underestimate the value of Bermudan Swaptions when using the state variables as regressors. This is mainly due to the use of a finite number of predetermined basis functions in the regression. Moreover, in high-dimensional settings, these approaches succumb to the Curse of Dimensionality. To address these issues, Deep-learning techniques have been used to solve the backward Stochastic Differential Equation associated with the value process for European and Bermudan Swaptions; however, these methods are constrained by training time and memory. To overcome these limitations, we propose leveraging Tensor Neural Networks as they can provide significant parameter savings while attaining the same accuracy as classical Dense Neural Networks. In this paper we rigorously benchmark the performance of Tensor Neural Networks and Dense Neural Networks for pricing European and Bermudan Swaptions, and we show that Tensor Neural Networks can be trained faster than Dense Neural Networks and provide more accurate and robust prices than their Dense counterparts.Comment: 15 pages, 9 figures, 2 table

    Local temperature and correlations in quantum many-body systems

    No full text
    Quantum Mechanics was established as the theory of the microscopic world, which allowed to understand processes in atoms and molecules. Its emergence led to a new scientific paradigm that quickly spread to different research fields. Two relevant examples are Quantum Thermodynamics and Quantum Many-Body Theory, where the former aims to characterize thermodynamic processes in quantum systems and the latter intends to understand the properties of quantum many-body systems. In this thesis, we tackle some of the questions in the overlap between these disciplines, focusing on the concepts of temperature and correlations. Specifically, it contains results on the following topics: locality of temperature, correlations in long-range interacting systems and thermometry at low temperature. The problem of locality of temperature is considered for a system at thermal equilibrium and consists in studying whether it is possible to assign a temperature to any of the subsystems of the global system such that both local and global temperatures are equal. We tackle this problem in two different settings, for generic one-dimensional spin chains and for a bosonic system with a phase transition at non-zero temperature. In the first case, we consider generic one-dimensional translation-invariant spin systems with short-range interactions and prove that it is always possible to assign a local temperature equal to the global one for any temperature, including at criticality. For the second case, we consider a three-dimensional discretized version of the Bose-Einstein model at the grand canonical ensemble for some temperature and particle density, and characterize its non-zero-temperature phase transition. Then, we show that temperature is locally well-defined at any temperature and at any particle density, including at the phase transition. Additionally, we observe a qualitative relation between correlations and locality of temperature in the system. Moving to correlations, we consider fermionic two-site long-range interacting systems at thermal equilibrium. We show that correlations between anti-commutative operators at non-zero temperature are upper bounded by a function that decays polynomially with the distance and with an exponent that is equal to the interaction exponent, which characterizes the interactions in the Hamiltonian. Moreover, we show that our bound is asymptotically tight and that the results extend to density-density correlations as well as other types of correlations for quadratic and fermionic Hamiltonians with long-range interactions. Regarding the results on thermometry, we consider a bosonic model and prove that strong coupling between the probe and the system can boost the thermal sensitivity for low temperature. Furthermore, we provide a feasible measurement scheme capable of producing optimal estimates at the considered regime.La Mecánica Cuántica fue establecida como la teoría del mundo microscópico, el cual permitió entender los procesos en átomos y moléculas. Su nacimiento llevo a un nuevo paradigma científico que se propagó rápidamente a otros campos de investigación. Dos ejemplos relevantes son la Termodinámica Cuántica y la Teoría Cuántica de muchos cuerpos, donde la primera pretende caracterizar los procesos termodinamicos en sistemas cuántico y la segunda intenta entender las propiedades de los sistemas cuánticos de muchos cuerpos. En esta tesis, atacamos algunas de las preguntas en la intersección entre estas disciplinas, enfocandonos en los conceptos de la temperatura y las correlaciones. Específicamente, contiene resutlados en os siguientes temas: localidad de la temperature, correlaciones en sistemas interactuantes de largo alcance y termometría a baja temperature. El problema de localidad de la temperatura es considerado para un sistema a equilibrio térmico y consiste en estudiar si es posible asignar temperature a cualquiera de los subsistemas del sistema global tal que la temperature local y global sean equivalentes. Atacamos este problemas en dos casos diferentes, for cadenas de spines genéricas y para un sistema de bosones con una transición de fase a temperature distinta a cero. En el primer caso, consideramos sistemas de espines invarantes traslacional y de una dimensión con interactions de corto alcance y provamos que siempre es posible asignar una temperature local igual a la global para cualquier temperature, incluyendo en la criticalidad. Para el segundo caso, consideramos una versión 3D y discretizada del modelo de Bose-Einstein en el estado gran canónico para alguna temperature y densidad de partículas, y caracterizamos su transición a temperatura distinta a cero. Luego, mostramos que la temperature esta localmente bien definida a cualquier temperature y cualquier densidad de partículas, incluyendo en la transición de fase. Adicionalment, observamos una relación cualitativa entre las correlaciones y la localidad de la temperature en el sistema. Moviéndonos a las correlaciones, consideramos sistemas fermiónicos de con interaction entre dos cuerpos y de largo alcance a equilibrio térmico. Mostramos que las correlations entre los operadores anti-comutativos at temperatura distinta a cero estan acotadas por arriba por una función que decae polinomiamente con la distancia y con un exponent que es igual al exponente de interacción, el cual caracteriza las interacciones en el Hamiltoniano. Además, mostrado que nuestro límite es "ajustado" asintoticamente y que los resultados se extiense a correlations entre operadores de densidad y a otros tipos de correlaciones para Hamiltonianos cuadráticos y fermiónicos con interacciones de largo alcance. Sobre los resultados en termometría, consideramos un modelo bosónico y provamos que el acoplamiento fuerte entre el termómetro y el sistema pueda incrementar la sensibilidad térmica para baja temperatura. Además, explicamos un esquema de medida accesible y capaz de producir estimación óptimas en el régimen que consideramo

    Locality of temperature in spin chains

    No full text
    In traditional thermodynamics, temperature is a local quantity: a subsystem of a large thermal system is in a thermal state at the same temperature as the original system. For strongly interacting systems, however, the locality of temperature breaks down. We study the possibility of associating an effective thermal state to subsystems of infinite chains of interacting spin particles of arbitrary finite dimension. We study the effect of correlations and criticality in the definition of this effective thermal state and discuss the possible implications for the classical simulation of thermal quantum systems

    Physics solutions for machine learning privacy leaks

    Get PDF
    Machine learning systems are becoming more and more ubiquitous in increasingly complex areas, including cutting-edge scientific research. The opposite is also true: the interest in better understanding the inner workings of machine learning systems motivates their analysis under the lens of different scientific disciplines. Physics is particularly successful in this, due to its ability to describe complex dynamical systems. While explanations of phenomena in machine learning based physics are increasingly present, examples of direct application of notions akin to physics in order to improve machine learning systems are more scarce. Here we provide one such pplication in the problem of developing algorithms that preserve the privacy of the manipulated data, which is especially important in tasks such as the processing of medical records. We develop well-defined conditions to guarantee robustness to specific types of privacy leaks, and rigorously prove that such conditions are satisfied by tensor-network architectures. These are inspired by the efficient representation of quantum many-body systems, and have shown to compete and even surpass traditional machine learning architectures in certain cases. Given the growing expertise in training tensornetwork architectures, these results imply that one may not have to be forced to make a choice between accuracy in prediction and ensuring the privacy of the information processed
    corecore